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1 Introduction

In this paper, we establish a relationship between the Weil-Petersson vol-
ume Vg,n(b) of the moduli space Mg,n(b) of hyperbolic Riemann surfaces
with geodesic boundary components of length b1, . . . , bn and the intersec-
tion numbers of tautological classes on the moduli space Mg,n of stable
curves. As a result, by using the recursive formula for Vg,n(b) obtained in
[Mirz], we derive a new proof of the Virasoro constraints for a point. This
result is equivalent to the Witten-Kontsevich formula [K].
Intersection theory of Mg,n. Let Mg,n be the moduli space of genus g
curves with n distinct marked points and Mg,n its Deligne-Mumford com-
pactification. The space Mg,n is a connected complex orbifold of dimension
3g−3+n [Har] . These moduli spaces are endowed with natural cohomology
classes. An example of such a class is the Chern class of a vector bundle on
the moduli space. There are n tautological line bundles defined on Mg,n:For
each marked point i, there exists a canonical line bundle Li in the orbifold
sense whose fiber at the point (C, x1, . . . , xn) ∈Mg,n is the cotangent space
of C at xi. The first Chern class of this bundle is denoted by ψi = c1(Li).
Note that although the complex curve C may have nodes, xi never coincides
with the singular points.

For any set {d1, . . . , dn} of integers define the top intersection number
of ψ classes by

〈 τd1 , . . . , τdn〉g =
∫

Mg,n

n∏
i=1

ψdi
i .

Such products are well defined when the d′is are non-negative integers and
n∑

i=1
di = 3g−3+n. In other cases 〈 τd1 , . . . , τdn〉g is defined to be zero. Since

we are in orbifold setting, these intersection numbers are rational numbers.
See [Lo1] and [Har] for more details.

Introduce formal variables ti, i ≥ 0, and define Fg, the generating func-
tion of all top intersections of ψ classes in genus g, by

Fg(t0, t1, . . .) =
∑
{di}

〈
∏

τdi
〉g
∏
r>0

tnr
r /nr! ,

where the sum is over all sequences of nonnegative integers {di} with finitely
many nonzero terms, and nr = Card(i : di = r). The generating function

F =
∞∑

g=0

λ2g−2Fg,
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arises as a partition function in two-dimensional quantum gravity.
Witten [Wit1] conjectured a recursive formula for the intersections of

tautological classes in the form of KdV differential equations satisfied by
F . Dijgraaf, Verlinde and Verlinde [DVV] showed that Witten’s conjecture
implies that eF is annihilated by a sequence of differential operators

L−1, L0, . . . , Ln, . . .

satisfying the Virasoro relations

[Lm, Lk] = (m− k)Lm+k.

For the definition of the Li’s see §6. The Virasoro constraints determine the
intersection numbers of tautological line bundles in all genera.

In [K], Kontsevich introduces a matrix model as the generating func-
tion for the intersection numbers on the moduli space to prove Witten’s
conjecture by expressing intersection numbers in terms of sums over ribbon
graphs. Also, A. Okounkov and R. Pandharipande gave a different proof by
using the relation between the Gromov-Witten theory of P1 and Hurwitz
numbers [OP]. For expository accounts of these proofs see [Lo1] and [O].

In this paper we prove that F , the generating function of the intersection
numbers, satisfies the Virasoro constraints. Our proof relies on the Weil-
Petersson symplectic geometry of the moduli space of curves, and results of
G. McShane [M] on lengths of simple closed geodesics on hyperbolic surfaces.
Weil-Petersson geometry of Mg,n. The key tool for obtaining the recur-
sive formula for the intersections of the tautological classes is understand-
ing the the relationship between the tautological classes and Weil-Petersson
symplectic form.

This form is the symplectic form of a Kähler, non-complete metric on the
moduli space of curves introduced by A. Weil [IT]. In [Mas], Masur obtained
growth estimates for the coefficients of the Weil-Petersson metric close to
the boundary of the moduli space. In [Wol4], Wolpert showed that the Weil-
Petersson symplectic form has a simple expression in terms of the Fenchel
Nielsen twist-length coordinates of the Teichmüller space (§2). Moreover,
he showed that the Weil-Petersson Kähler form ωWP extends as a closed
form to Mg,n, and defines a cohomology class [ω] ∈ H2(Mg,n,R). See §2 for
more details.
Volumes of moduli spaces of bordered Riemann surfaces. The Weil-
Petersson volume of the moduli space Mg,n is a finite number and its value
as a function of g and n arises naturally in different contexts [KMZ] .
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In order to integrate certain type of geometric functions over the moduli
space [Mirz], we find it fruitful to consider more generally the moduli space
Mg,n(b1, . . . , bn) of bordered Riemann surfaces with the geodesic bound-
ary components of length b1, .., bn. We calculate the Weil-Petersson volume
Vg,n(b) of the moduli space Mg,n(b) using two different methods:

(I): In [Mirz], we approach the study of the volumes of these moduli
spaces via the length functions of simple closed geodesics on a hyperbolic
surface and show that Vg,n(b) is a polynomial in b. We also give an explicit
recursive method for calculating these polynomials (see §5).

(II): In §4, we use the symplectic geometry of moduli spaces of bordered
Riemann surfaces to calculate these volumes. This method allows us to read
off the intersection numbers of tautological line bundles from the volume
polynomials.
(I): A recursive formula for volumes. By using an identity for lengths of
simple closed geodesics on a bordered Riemann surface which generalizes the
result in [M], we obtain a recursive formula for Vg,n(b) in terms of Vg1,n1(b)

′s
where 2g1 + n1 < 2g + n ( See equation 5.7).

As a result, we establish:

Theorem 1.1. The volume Vg,n(b) = Vol(Mg,n(b1, . . . , bn)) is a polynomial
in b1, . . . , bn, namely:

Vg,n(b) =
∑

|α|≤3g−3+n

Cg(α) · b 2α,

where Cg(α) > 0 lies in π6g−6+2n−2|α| ·Q.

Here the exponent α = (α1, . . . , αn) ranges over elements in (Z≥0)n,
bα = bα1

1 · · · bαn
n , and |α| =

∑
αi.

(II): Symplectic geometry of Mg,n(b). Working with Mg,n(b) allows us
to exploit the existence of commuting Hamiltonian S1-actions. The space
Mg,n(b) has a natural orbifold structure. We generalize the tautological line
bundle Li over Mg,n to the following circle bundle (in the orbifold sense)
over Mg,n(b):

S1 −−−−→ {(X, p) | p ∈ βi, X ∈Mg,n(b)}y
Mg,n(b)
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where S1 acts by moving the points p on βi. This shows that Mg,n(b) is
a reduced space. Then we can use the method of symplectic reduction,
discussed in §3, to relate the volumes of moduli spaces of curves to the
intersection numbers of tautological classes Mg,n(§4). Note that the picture
is a bit different when g = n = 1 in which case all elements of M1,1(b) have
non trivial automorphisms of order 2 ; namely, every X ∈ M1,1(b) comes
with an elliptic involution.

When (g, n) 6= (1, 1), a generic element of Mg,n(b) does not have any
non trivial automorphism which leaves the boundary components setwise
fixed. In this case, the coefficient Cg(α) in Theorem 1.1 is given by

Cg(α) =
1

2|α| |α|! (3g − 3 + n− |α|)!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α|, (1.1)

where ψi is the first Chern class of the i-th tautological line bundle, ω is the
Weil-Petersson symplectic form, α! =

∏
αi! and |α| =

∑
αi.

Remark. By a result of Wolpert [Wol2],

κ1 =
[ω]
2π
,

where κ1 is the first Mumfords tautological cohomology class on Mg,n.
Examples. Using the recursive formula in Section 5, one can show that

Vol0,4(b) =
1
2
(4π2 + b21 + b22 + b23 + b24).

Therefore, we have
Vol(M0,4) = 2π2,

and ∫
M0,4

ψ1 = 1.

Also, we have

Vol2,1(b) =
(4π2 + b21) · (12π2 + b21) · (6960 π2 + 384 π2b21 + 5 b41)

2211840
,

which implies that ∫
M2,1

ψ4
1 =

24 · 4! · 5
2211840

=
1

242 · 2
.
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Remark. It is known [IZ] that in general,∫
Mg,1

ψ3g−2
1 =

1
24g · g!

.

Also, a formula for Vol0,n(0), the Weil-Petersson volume of M0,n, was
obtained in [Zo]. Note that there is a small difference in the nolmaliza-
tion of the volume form; in [Zo] the Weil-Petersson Kähler form is 1/2 the
imaginary part of the Weil-Petersson pairing, while here we work with the
imaginary part of the pairing. So our answers are different by a power of 2.

There is an exceptional case which arises for g = n = 1. In this case
generic X ∈M1,1 has a symmetry of order 2 which acts non trivially on the
cotangent space of X at the marked point point. See [Wit1]. Therefore, the
integral of ψ1 is half of what equation 1.1 predicts. In §5, we show that:

Vol1,1(b) = b2/24 + π2/6.

Hence, we get
Vol(M1,1) = π2/6,

and ∫
M1,1

ψ1 =
1
2
× 1

12
=

1
24
,

which agree with the known results [Har].
Note that since we are in an orbifold setting the intersection numbers

of tautological classes are positive rational numbers which agrees with our
result that the leading coefficients of Vg,n(b) lie in Q+.
The main result. By combining equation 1.1 and the recursive formula for
the Vg,n(b)’s obtained in [Mirz], we prove that the generating function for all
top intersections of ψ classes in all genera satisfy the Virasoro constraints
(§6).
Analogies with moduli spaces of stable bundles. The discussion above
suggests some similarities between Mg,n and the variety Hom(π1(S), G)/G
of representations of the fundamental group of the oriented surface S in a
compact Lie groupG, up to conjugacy. This space is naturally equipped with
a symplectic structure [Gol1]. For G = SU(2), the representation variety is
identified with the moduli space of semi-stable holomorphic rank 2 vector
bundles over a fixed Riemann surface.
For θ1, . . . , θn ∈ G let

Rg,n(θ1, . . . , θn)
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be the variety of representations of π1(Sg,n) in SU(2) such that the mon-
odromy around βi lies in the conjugacy class of θi. Here fixing the conjugacy
class of the monodromy around a boundary component β corresponds to fix-
ing the length of β in the case of Mg,n(b).

Like our argument for proving Theorem 6.1, it is possible to derive re-
cursive formulas for intersection numbers of line bundles on Rg,n by relating
these numbers to the symplectic volume of Rg,n(θ1, . . . , θn). This approach
was first suggested by Witten [Wit2],and also used in [Weit].

An important difference is that the action of the mapping class does not
enter in the Rg,n case. The space Rg,n is analogous to Teichmüller space,
but it has finite volume. Also, the action of the mapping class group on
Rg,n(θ) is ergodic [Gol2].
Acknowledgment. I would like to thank Curt McMullen for his invaluable
help, encouragement, and many stimulating discussions. I would also like
to thank Scott Wolpert for many helpful comments. I am grateful to Izzet
Coskun, Melissa Liu, Andrei Okounkov, Rahul Pandharipande, Ravi Vakil,
and Jonathan Weitsman for helpful discussions. I would also like to thank
the referee for helpful comments and pointing out many mistakes in the
original draft.

2 Background material

In this section, We present some familiar concepts in a less familiar setting
about the symplectic structure of the moduli space of bordered Riemann
surfaces and basic hyperbolic geometry.

Recall that a symplectic structure on a manifold M is a non-degenerate
closed 2-form ω ∈ Ω2(M). The n-fold wedge product

1
n!
ω ∧ · · · ∧ ω

never vanishes and defines a volume form on M .
First, we briefly summarize basic background material and constructions
in Teichmüller theory of Reimann surfaces with geodesic boundary compo-
nents. For further background see [IT] and [Bus].
Teichmüller Space. A point in the Teichmüller space T (S) is a complete
hyperbolic surface X equipped with a diffeomorphism f : S → X. The map
f provides a marking on X by S. Two marked surfaces f : S → X and
g : S → Y define the same point in T (S) if and only if f ◦ g−1 : Y → X
is isotopic to a conformal map. When ∂S is nonempty, consider hyperbolic
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Riemann surfaces homeomorphic to S with geodesic boundary components
of fixed length. Let A = ∂S and L = (Lα)α∈A ∈ R|A|

+ . A point X ∈ T (S,L)
is a marked hyperbolic surface with geodesic boundary components such
that for each boundary component β ∈ ∂S, we have

`β(X) = Lβ.

Let Sg,n be an oriented connected surface of genus g with n boundary com-
ponents (β1, . . . , βn). Then

Tg,n(L1, . . . , Ln) = T (Sg,n, L1, . . . , Ln),

denote the Teichmüller space of hyperbolic structures on Sg,n with geodesic
boundary components of length L1, . . . , Ln. By convention, a geodesic of
length zero is a cusp and we have

Tg,n = Tg,n(0, . . . , 0).

Let Mod(S) denote the mapping class group of S, or the group of isotopy
classes of orientation preserving self homeomorphisms of S leaving each
boundary component setwise fixed. The mapping class group Modg,n =
Mod(Sg,n) acts on Tg,n(L) by changing the marking. The quotient space

Mg,n(L) = M(Sg,n, `βi
= Li) = Tg,n(L1, . . . , Ln)/Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n
boundary components of length `βi

= Li. Also, we have

Mg,n = Mg,n(0, . . . , 0).

For a disconnected surface S =
k⋃

i=1
Si such that Ai = ∂Si ⊂ ∂S, we have

M(S,L) =
k∏

i=1

M(Si, LAi),

where LAi = (Ls)s∈Ai .
The Weil-Petersson symplectic form. By work of Goldman [Gol1], the
space Tg,n(L1, . . . , Ln) carries a natural symplectic form invariant under the
action of the mapping class group. This symplectic form is called the Weil-
Petersson symplectic form, and denoted by ω or ωwp. We investigate the
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volume of the moduli space with respect to the volume form induced by the
Weil-Petersson symplectic form. Also, when S is disconnected, we have

Vol(M(S,L)) =
k∏

i=1

Vol(M(Si, LAi)).

When L = 0, there is a natural complex structure on Tg,n, and this sym-
plectic form is in fact is the Kähler form of a Kähler metric [IT].
The Fenchel-Nielsen coordinates. A pants decomposition of S is a set of
disjoint simple closed curves which decompose the surface into pairs of pants.
Fix a system of pants decomposition of Sg,n, P = {αi}k

i=1, where k = 6g−6+
2n. For a marked hyperbolic surface X ∈ Tg,n(L), the Fenchel-Nielsen coor-
dinates associated with P, {`α1(X), . . . , `αk

(X), τα1(X), . . . , ταk
(X)}, con-

sists of the set of lengths of all geodesics used in the decomposition and
the set of the twisting parameters used to glue the pieces. We have an
isomorphism

Tg,n(L) ∼= RP
+ × RP

by the map
X → (`αi(X), ταi(X)).

By work of Wolpert, over Teichmüller space the Weil-Petersson symplectic
structure has a simple form in Fenchel-Nielsen coordinates [Wol1].

Theorem 2.1 (Wolpert). The Weil-Petersson symplectic form is given by

ωwp =
k∑

i=1

d`αi ∧ dταi .

Twisting. For any simple closed geodesic α on X ∈ Tg,n(L) and t ∈ R, we
can deform the hyperbolic structure by a right twist as follows. We cut the
surface along α and reglue back after twisting distance t to the right. The
hyperbolic structure of the complement of the cut extends to a hyperbolic
structure of the new surface. Let us denote the new surface by twtα(X).
The resulting continuous path in Teichmüller space is the Fechel-Nielsen
deformation of X along α which is generated by the Fenchel-Nielsen vector
field. For t = `α(X), we have

twtα(X) = φα(X),

where φα ∈ Mod(Sg,n) is a right Dehn twist about α. The vector field
generated by twisting around α is symplectically dual to the exact one form
d`α. As a consequence of Theorem 2.1 ( See also [Wol1]), we have
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Corollary 2.2. The right twist flow twtα is the Hamiltonian flow of the
length function with respect to the Weil-Petersson symplectic form.

Compactification of the moduli space. Let Mg,n be the Deligne-
Mumford compactification of the moduli space obtained by adjoining curves
with simple closed geodesics of length zero or hyperbolic surfaces with nodes
[Har].

By work of Wolpert [Wol4], the Weil-Petersson symplectic form extends
smoothly to the boundary with respect to the Fenchel-Nielsen coordinates.
This form is closed and everywhere nondegenerate and therefore defines
a symplectic form on Mg,n(L). In [Wol3] Wolpert showed that ω/π2 ∈
H2(Mg,n,Q), and by multiplying [ω]/π2 by some integer, we get a positive
line bundle over Mg,n which implies that Mg,n is a projective algebraic
variety. See [Wol3] for more details.

In a similar way, we can compactify the space Mg,n(L) by allowing
`γ = 0 for a simple closed geodesic γ inside the surface. When L 6= 0, the
moduli space Mg,n(L) does not have a natural complex structure. But it
has a natural real-analytic structure from the Fenchel-Nielson coordinates
[Wol4]. As it was pointed out to the author by the referee, the approach of
describing stable noded curves in terms of hyperbolic surfaces first appeared
in a paper by Bers [Bers].
Orbifold structure of the moduli space. Since the action of the map-
ping class group on Teichmüller space could have fixed points, the space
Mg,n(L) is not a manifold. The orbifold points of the moduli space corre-
spond to Riemann surfaces where the automorphism group is non trivial.
Since a complete hyperbolic surface can only have finitely many automor-
phisms, the moduli space is a nice orbifold.
For example, a Riemann surface X ∈ M0,n does not have non trivial au-
tomorphisms. Therefore, the moduli space M0,n is a manifold. In general,
the moduli space Mg,n(L) is a compact orbifold and the Deligne-Mumford
compactification locus, Mg,n(L)−Mg,n(L), is a union of finitely many lower
dimensional suborbifolds intersecting transversely [Har].
In order to apply results that are known for manifolds (e.g. Corollary 3.3),
it is important to show that by considering a finite covering of Mg,n(L), we
can assume that the moduli space is a smooth manifold. We can consider

Tg,n(L)/H

where H is a torsion free subgroup of Modg,n.
More precisely, each finite quotient group G of the mapping class group

determines a Galois cover Mg,n(L)[G] → Mg,n(L) and as proved in [Lo2]
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and [BP], we have

Theorem 2.3. There exists a finite group G such that Mg,n(L)[G] is a
smooth manifold, and the compactification locus is a union of codimensional
two submanifolds.

This theorem allows us to use results of the next section on symplectic
reduction for studying the moduli space of curves.
Coverings and volume forms of the Mg,n(L)’s. Let γ1, γ2, . . . γk be a
set of disjoint simple closed curves on Sg,n, and Γ = (γ1, . . . , γk). Then any
g ∈ Modg,n acts on Γ by

g · Γ = (g · γ1, . . . , g · γk).

Let OΓ be the set of homotopy classes of elements of the set Mod ·Γ. Con-
sider Mg,n(L)Γ defined by the following space of pairs:

{(X, η)| X ∈Mg,n(L) , η = (η1, . . . , ηk) ∈ OΓ, ηi’s are closed geodesics on X}.

Let πΓ : Mg,n(L)Γ →Mg,n(L) be the projection map defined by

πΓ(X, η) = X.

Let φγ ∈ Modg,n denote the Dehn twist along γ. Then

GΓ =
s⋂

i=1

Stab(γi) ⊂ Mod(Sg,n)

is generated by the φγi ’s and elements of the mapping class group of Sg,n(γ),
and

Mg,n(L)Γ = Tg,n(L)/Gγ .

As the Weil-Petersson symplectic structure on Teichmüller space is invari-
ant under the action of the mapping class group, it induces a symplectic
structure on Mg,n(L)Γ which is the same as the form πΓ∗(ωwp).

3 Symplectic reduction

In this section we recall some basic facts on symplectic geometry of symplec-
tic quotients [Ki] and Chern-Weil theory of principle circle bundles[MS]. For
an interesting exposition of general ideas surrounding symplectic quotients
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and some applications see [G].
Principal S1-bundles. Let P and M be smooth manifolds, π : P → M
map of P onto M and S1 act on P . Then (P, S1,M) is a Principal S1 bundle
if

1. S1 acts freely on P .

2. π(p1) = π(p2) if and only if there exists g ∈ S1 such that p1 · g = p2.

3. P is locally trivial over M.

In fact, the set of principal circle bundles is an Abelian group.
A connection on a principal S1 bundle is a smooth distribution H on P such
that

1. TpP = Hp
⊕
Vp , Vp = kerπ∗, and

2. g∗Hp = Hp·g.

Vectors in Hp are called horizontal. For v ∈ TpP , we denote the horizontal
part by Hv. A connection is uniquely determined by an invariant 1-form A
such that A(X) = 1, where X is the vector field generating the S1 action.
We can choose the one form defined by

A(v) =
< v,X >

< X,X >
,

where <,> is an S1 invariant metric on P .
On the other hand, for any p-form ω on P define Dω by

Dω(v1, . . . , vp+1) = dω(Hv1, . . . ,Hvp+1).

If A is the connection form of H, Φ = D(A) is called the curvature form of
H. Then we have

Lemma 3.1. There exists a unique closed 2-form Ω on M such that Φ =
π∗Ω. Moreover, the cohomology class of Ω is independent of the choice of
the connection form, and

c1(P ) = [Ω] ∈ H2(M,Z).

For more details see [McD] and [MS].
Moment map. Let (M,ω) be a symplectic manifold. The Hamiltonian
vector field ξH generated by the function H : M → R is the vector field
determined by

ω(ξH , .) = dH(.).
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Suppose that a compact Lie group G with Lie algebra g acts smoothly
on M and preserves the symplectic form ω. This action gives rise to an
infinitesimal action of g that associate to every ξ ∈ g a vector field ξ#.
Then the moment map µ : M → g∗ is defined by

dµ(Y )(X) = ωm(X#, Y ),

where Y is a vectorfield on M . In other words, the map µξ : M → R defined
by the pairing

µξ(m) = µ(m) · ξ
is a Hamiltonian function for the vector field on M induced by ξ. Assume
that the map µ is proper. Because the moment map µ is G invariant, G acts
on each level set of the moment map. The reduced space is the quotient

Ma = µ−1(a)/G

for any a = (a1, . . . , an) in the image of µ. The space Ma inherits a sym-
plectic form ωa from the symplectic structure on M.
Example. Let

π : Mr = µ−1(0)× [−r, r] → µ−1(0)

be the projection map. If A is an S1 invariant connection on µ−1(0), then
we can define an S1 invariant 2 form, wr by

ωr = π∗ω + d(tA).

When r is small ωr is a symplectic form on Mr, and the S1 action on
Mr is the Hamiltonian flow of the moment map defined by

µr(x, t) = t.

Remark. If 0 is a regular value of µ, by the coisotropic embedding theorem
there is a neighborhood of µ−1(0) on which the symplectic form is given as
in the above example [G]. This is a generalization of Darboux’s theorem
stating that symplectic manifolds do not have any local invariants( [McD]).
Variation of the reduced form and volume. When a is close to 0, Ma is
diffeomorphic to M0. It is important to know how the symplectic geometry
of Ma varies when one varies a.

When G = Tn = Sn
1 , the action of G on the level set µ−1(a) gives rise to

n circle bundles, C1, . . . , Cn defined over Ma.

Tn −−−−→ µ−1(a) −−−−→ My
Ma = µ−1(a)/Tn
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Let φi = c1(Ci). Let vj be the vector field corresponding to the action of the
jth copy of S1. Fix a connection α on µ−1(0); that is a S1-invariant action
one form such that we have

α(vj) = 1.

The following result shows that wa varies linearly in a ([G]) :

Theorem 3.2 (Normal form theorem). The space (Ma, wa) is symplecto-
morphic to M0 equipped with the symplectic form w0 + aΩ, where Ω is the
curvature form of the connection α.

For a = (a1, . . . , an) with |a| ≤ ε, Ma and M0 are diffeomorphic. Since
c1(C) = [Ω], under this diffeomorphism the cohomology classes of the sym-
plectic forms are related by :

[wa] = [w] +
n∑

i=1

ai · [φi],

where φi = c1(Ci).
Remark. This theorem is closely related to a version of the Duistermaat-
Heckman theorem asserting that the pushforward of the symplectic measure
by the moment map for a torus action is a piecewise polynomial. For more
details see [G].

Now by integrating wa over the space Ma, we get:

Corollary 3.3. Let 0 be a regular value of the proper moment map µ : M →
Rn of the Hamiltonian action of Tn on M . Then for sufficiently small ε > 0
and a ∈ Rn

+ with |a| ≤ ε, the volume of Ma = µ−1(a)/Tn is a polynomial in
a1, . . . , an of degree m = dim(Ma)/2 given by∑

α
|α|≤m

C(α) · aα,

where
α! (m− |α|)! C(α) =

∫
M0

φα1
1 · · ·φαn

n · ωm−|α|.

Here the exponent α = (α1, . . . , αn) ranges over elements in Zn
≥0, a

α =

aα1
1 · · · aαn

n , |α| =
n∑

i=1
αi and α! =

n∏
i=1

αi!.
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4 Volumes of moduli spaces of bordered Riemann
surfaces

In this section we establish a relationship between the volume polynomials
and intersection numbers of tautological classes over moduli space.
Collar curves. Define the function S(x) by

S(x) = arcsinh
(

1
sinh(x/2)

)
.

For a simple closed geodesic γ on a hyperbolic surface X, there is a collar
neighborhood of width S(`γ(X)) which is an embedded annulus. Also, two
simple closed geodesics are disjoint if and only of their collars are disjoint
[Bus]. Therefore, there exists a continuous function F : R+ → R+ such that

• For each boundary component βi of X ∈ Tg,n(L), there is a curve β̃i of
constant curvature of length F (`βi

(X)) inside the collar neighborhood
of βi, and

• lim
x→0

F (x) = 1/4.

As `i → 0, β̃i tends to a horocycle of length 1/4 around the corresponding
puncture. When `βi

(X) > 0, there is a canonical bijection between β̃i and
βi.
Geometric circle bundles. The orientation on Sg,n defines a canonical
orientation on its boundary components as follows. Let βi be a boundary
component of X ∈ Tg,n(L), x ∈ βi, and Nx an outward vector normal to
βi at x. Then a tangent vector vx to βi is positive iff the pair (vx, Nx) has
positive orientation with respect to the orientation of X.

Now let γi : [0, Li] → βi be an oriented arc length parameterization of
βi. For any t ∈ [0, Li] define ξt : βi → βi by

ξt(γi(s)) = γi(s+ t · Li).

As ξt+1 = ξt, ξ defines an S1-action on βi.
Let β̃i a curve parallel to the boundary component βi on X ∈ Tg,n(L).

The advantage of working with the paralled curve instead of the boundary
component is that β̃i has positive length even when the geodesic length of
βi is zero in which case β̃i is a horocycle around the puncture pi. Otherwise,
there is a canonical one-to-one map between β̃i and βi. Also β̃i is disjoint
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from β̃j when i 6= j.
Define Si(Tg,n(L)) by

Si(Tg,n(L)) = {(X, p) | p ∈ β̃i, X ∈ Tg,n(L)} → Tg,n(L)}.

On the other hand, the mapping class group Modg,n acts on Si(Tg,n(L)).
Since the stabilizer of any point is finite, the quotient space Si(Mg,n(L)) is
a circle bundle over Mg,n(L) in the orbifold sense. Also, the circle bundle
can be similarly defined over X ∈ Mg,n(L) where the length of a simple
closed geodesic inside the surface can be zero. It is essential that the parallel
curve β̃i is always disjoint from the possible singular points of X ∈Mg,n(L).
Therefore, we have

Lemma 4.1. For any 1 ≤ i ≤ n and L ∈ (R+)n, (Si(L), S1,Mg,n(L)) is a
principal circle bundle over Mg,n(L) in the orbifold sense.

Tautological classes. Now we consider the case when the length of all
boundary components is zero. Since Mg,n is an orbifold, the first Chern
class of the circle bundle Si defines an element of the cohomology class of
the moduli space

[c1(Si)] ∈ H2(Mg,n,Q).

In this part, we will relate the first Chern class of Si to the tautological class

ψi = c1(Li).

Each X ∈ Tg,n naturally gives rise to a complex 1-manifold via its
uniformization. In fact, there is a unique compact complex curve C and
finitely many points p1, . . . , pn on C such that X is conformally equivalent
to C − {p1, . . . , pn}.

Note that each cusp neighborhood of X is conformally equivalent to a
punctured disk [Bus]. Around each boundary component pi, we consider the
parallel curve β̃i as defined earlier in this section. Let ∆ ⊂ C be the unit
disk. Then any element of the tangent space at the origin corresponds to a
point on β̃i, the horocycle around the origin with respect to the hyperbolic
structure on ∆−{0}. But the orientation we put on βi earlier in this section
is different from the one induced by the orientation on tangent vectors at x.

On the other hand as Li is a complex bundle, the underlying real vec-
tor bundle has a canonical orientation. Therefore the duality between the
tangent and cotangent space at pi will give us an orientation reversing iso-
morphism between the line bundle Li and the circle bundle Si with reverse
orientation. Therefore, we can establish the following result:
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Theorem 4.2. For any 1 ≤ i ≤ n, we have:

[c1(Si)] = [ψi] ∈ H2(Mg,n,Q)

where ψi is the ith tautological class over Mg,n.

Remark. From now on, we only deal with the circle bundle Si and for-
get about the complex structure of Li. Later, we will use the Chern-Weil
description of Characteristic classes in terms of the curvature form for cal-
culating the intersection numbers. See Appendix C of [MS] for more details.
Moduli space of bordered Riemann surfaces. Now we consider the
moduli spaces of bordered Riemann surfaces with marked points (without
fixing the lengths of the boundary components)

M̂g,n = {(X, p1, . . . , pn) | pi ∈ β̃n, X ∈Mg,n(L1, . . . , Ln), Li ≥ 0}.

Define the map ` : M̂g,n → Rn
+ by

`(X, p1, . . . , pn) = (`β1(X), . . . , `βn(X)).

On the other hand, we have a natural Tn = Sn
1 action on the space M̂g,n

as follows. For each 1 ≤ i ≤ n, S1
i acts by moving pi on the curve β̃i, that is

ξt
i(X, p1, . . . , pn) = (X, p1, . . . , ξ

t(pi), . . . , pn).

The goal of this part is to show that the Weil-Petersson symplectic form
defines a symplectic form on M̂g,n with respect to which the Tn action is
the Hamiltonian flow of the function `2/2. The key tool is the extension
of the Weil-Petersson symplectic form to the compactification locus of the
moduli space.
Extension of the Weil-Petersson symplectic form to Mg,n(b) . As
we mentioned in §2, the moduli space Mg,n(b) has a natural real analytic
structure arising from the Fenchel-Nielsen coordinates [Wol4].

By work of Wolpert [Wol4], Weil-Peterssen symplectic form has a smooth
extension ωFN to Mg,n(L) (§2). Using the extension of the Weil-Petersson
symplectic form, we can define a Tn invariant symplectic form on M̂g,n.
Remark. There is a different method for extending the Weil-Peterssen
symplectic form to Mg,n by using a closed current ωC relative to the com-
plex structure of Mg,n. But the complex structure and the Fenchel Nielsen
coordinates do not have the same smooth structure on Mg,n . In [Wol4],
Wolpert showed that ωFN and ωC determine the same cohomology class.
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Theorem 4.3. The orbifold M̂g,n has a natural Tn-invariant symplectic
structure such that

1. The map
`2/2 = (`β1(X)2/2, . . . , `βn(X)2/2).

is the moment map for the action of Tn on M̂g,n.

2. The canonical map

s : `−1(L1, . . . , Ln)/T →Mg,n(L1, . . . , Ln)

is a symplectomorphism.

Note that the restriction of this symplectic form to Mg,n(0, . . . , 0) is just
the Weil-Petersson symplectic form.
Proof. Let Sg,2n be a surface of genus g with 2n boundary components
β1, . . . , β2n. We fix n simple closed curves γ1, . . . , γn on Sg,2n such that γi

bounds a pair of pants with β2i−1 and β2i, and let Γ = (γ1, . . . , γn) . Let
OΓ be the set of homotopy classes of elements of the set Modg,2n ·Γ. We
consider Mg,2n

Γ defined by:

{(X, η)| X ∈Mg,2n , η = (η1, . . . , ηn) ∈ OΓ, ηi’s are closed geodesics on X}.

Note that by Wolpert’s result, the symplectic form induced by the Weil-
Petersson form on MΓ

g,2n extends to Mg,2n
Γ. See §2 for more details.

On the other hand, each boundary of a pair of pants has two canonical
points corresponding to the other two boundary components, the end points
of the length minimizing geodesics connecting to the other boundaries.

Therefore we get a map

f : M̂g,n →Mg,2n
Γ
,

where for X ∈ Mg,n(L1, . . . , Ln), f(X, p1, . . . , pn) is a surface of genus g
with 2n punctures that we get by gluing n pairs of pants Σ1, . . . ,Σn with
boundary lengths (Li, 0, 0) to boundary components of X so that the point
pi is adjacent to the canonical point on the boundary of Σi corresponding
to β2i−1.

Then f is a diffeomorphism and defines a symplectic form on M̂g,n com-
ing from the Weil-Petersson symplectic form on Mg,2n

Γ. Now the result is
immediate by using Corollary 2.2.

2
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Theorem 4.4. The coefficients of the volume polynomial

Vol(Mg,n(L1, . . . , Ln)) =
∑

|α|≤3g−3+n

Cg(α) · L2α

are given by

Cg(α1, . . . , αn) =
2m(g,n)|α|

2|α| |α|! (3g − 3 + n− |α|)!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α|,

where ψi is the first Chern class of the i-th tautological line bundle and ω
is the Weil-Petersson symplectic form. Here m(g, n) = δ(g − 1)× δ(n− 1),
α! =

∏
αi! and |α| =

∑n
i=1 αi.

Proof. Note that by Theorem 2.3, we can assume that the moduli space
is a manifold. Using Theorem 4.3, the result is an immediate Corollary of
Theorem 4.2 and Theorem 3.3 for µ = `2/2. See the introduction for the
exceptional case when g = n = 1. 2

5 A recursive formula for Weil-Petersson volumes

In this section we state a recursive formula for the Vg,n(L)’s obtained in
[Mirz]. The recursive formula (equation 5.7) relates the volume polynomial
Vg,n(L) to the volume polynomials of the moduli spaces of Riemann surfaces
that we get by cutting one pair of pants from Sg,n.
An identity for the lengths of simple closed geodesics. Our point
of departure for calculating these volume polynomials is an identity [M] for
the lengths of simple closed geodesics on a punctured hyperbolic Riemann
surface.

Theorem 5.1 (Generalized McShane identity for bordered surfaces). For
any X ∈ Tg,n(b1, . . . , bn) with 3g − 3 + n > 0, we have

∑
(α1,α2)

D(b1, `α1(X), `α2(X)) +
n∑

i=2

∑
γ

R(b1, bi, `γ(X)) = b1. (5.1)

Here the first sum is over all unordered pairs of simple closed geodesics
(α1, α2) bounding a pair of pants with β1, and the second sum is over simple
closed geodesics γ bounding a pair of pants with β1 and βi.
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In fact we have

D(x, y, z) = 2 log

(
e

x
2 + e

y+z
2

e
−x
2 + e

y+z
2

)
, (5.2)

and

R(x, y, z) = x− log
(

cosh(y
2 ) + cosh(x+z

2 )
cosh(y

2 ) + cosh(x−z
2 )

)
. (5.3)

Define H : R2 → R by

H(x, y) =
1

1 + e
x+y

2

+
1

1 + e
x−y

2

.

It is easy to check that:

∂

∂x
D(x, y, z) = H(y + z, x), (5.4)

and
∂

∂x
R(x, y, z) =

1
2
(H(z, x+ y) +H(z, x− y)). (5.5)

In [Mirz], we also develop a method to integrate the generalized identity
over certain coverings of Mg,n(b1, . . . , bn). As a result, we obtain a recursive
formula for the Vg,n(b)’s without having to find a fundamental domain for
the action of the mapping class group on the Teichmüller space [Mirz].
Calculation of V1,1(L). Before stating the recursive formula we sketch the
main idea of the calculation of the Vg,n(L)’s through an example when g =
n = 1. In this case, using Theorem 5.1 for a hyperbolic surface of genus one
with one geodesic boundary component implies that for any X ∈ T (S1,1, L),
we have ∑

γ

D(L, `γ(X), `γ(X)) = L,

where the sum is over all simple closed curves γ on S1,1. Also, we have

∂

∂L
D(L, x, x) =

1

1 + ex−
L
2

+
1

1 + ex+L
2

.

Using the method developed in [Mirz] for integrating the left hand side of
the identity over M1,1(L), we get

L · V1,1(L) =

∞∫
0

x D(L, x, x) dx.
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So we have

∂

∂L
L · V1,1(L) =

∞∫
0

x · ( 1

1 + ex+L
2

+
1

1 + ex−
L
2

) dx.

By setting y1 = x+ L/2 and y2 = x− L/2, we get

∞∫
0

x · ( 1

1 + ex+L
2

+
1

1 + ex−
L
2

) dx =

∞∫
L/2

y1 − L/2
1 + ey1

dy1 +

∞∫
−L/2

y2 + L/2
1 + ey2

dy2 =

= 2

∞∫
0

y

1 + ey
dy +

L/2∫
0

y − L/2
1 + ey

dy +

−L/2∫
0

y + L/2
1 + ey

dy =

π2

6
+

L/2∫
0

(y − L/2)(
1

1 + ey
+

1
1 + e−y

) dy =
π2

6
+
L2

8
,

since we have
1

1 + ey
+

1
1 + e−y

= 1.

Therefore, we have:

V1,1(L) =
L2

24
+
π2

6
. (5.6)

Remark. This result agrees with the result obtained in [NN].
Statement of the recursive formula. Now we state a recursive formula
for Vg,n(L), the Weil-Petersson volume of Mg,n(L) [Mirz].
The volume function Vg,n(L1, . . . , Ln) is a symmetric function in L1, . . . , Ln.
Hence for any set A of positive numbers with |A| = n, we can define Vg,n(A)
by

Vg,n(A) = Vg,n(a1, . . . , an),

where {a1, . . . , an} = A.
In the simplest case when n = 3 and g = 0, the moduli spaceM0,3(L1, L2, L3)
consists of only one point, so we let

V0,3(L1, L2, L3) = 1.

The function Vg,n(L1, . . . , Ln) for any g and n (2g − 2 + n > 0) is deter-
mined recursively as follows :
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• For any L1, L2, L3 ≥ 0, set

V0,3(L1, L2, L3) = 1,

and

V1,1(L1) =
L2

1

24
+
π2

6
.

• Let L̂ = (L2, . . . , Ln). When (g, n) 6= (1, 1), (0, 3), the volume Vg,n(L) =
Vol(Mg,n(L)) is inductively determined by :

∂

∂L1
L1Vg,n(L) = Acon

g,n (L1, L̂) +Adcon
g,n (L1, L̂) + Bg,n(L1, L̂), (5.7)

where the functions

Acon
g,n (L1, L̂) =

1
2

∞∫
0

∞∫
0

x y Âcon
g,n (x, y, L1, L̂) dx dy, (5.8)

Adcon
g,n (L1, L̂) =

1
2

∞∫
0

∞∫
0

x y Âdcon
g,n (x, y, L1, L̂) dx dy, (5.9)

and

Bg,n(L1, L̂) =

∞∫
0

x · B̂g,n(x, L1, L̂) dx, (5.10)

are defined in terms of the Vh,m(L)’s with 3h+m < 3g + n as follows.
First, we define the functions

Âcon
g,n : Rn+2

+ → R+,

Âdcon
g,n : Rn+2

+ → R+,

and
B̂g,n : Rn+1

+ → R+.

To do this, we need the function H : R → R+ defined by

H(x, y) =
1

1 + e
x+y

2

+
1

1 + e
x−y

2

.

Also, as in the Introduction, let

m(g, n) = δ(g − 1)× δ(n− 1).
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Namely, m(g, n) = 0 unless g = 1 and n = 1.
I) : Definition of Âcon

g,n . Define Âcon
g,n : Rn+2

+ → R+ by

Âcon
g,n (x, y, L1, . . . , Ln) =

Vg−1,n+1(x, y, L̂)
2m(g−1,n+1)

·H(x+ y, L1).

II) : Definition of Âdcon
g,n. Let Ig,n be the set of ordered pairs

a = ((g1, I1), (g2, I2))

where I1, I2 ⊂ {2, . . . , n} and 0 ≤ g1, g2 ≤ g such that the following holds:

1. The two sets I1 and I2 are disjoint and {2, 3, . . . , n} = I1 t I2.

2. The numbers g1, g2 ≥ 0 and n1 = |I1|, n2 = |I2| satisfy

2 ≤ 2g1 + n2,

2 ≤ 2g2 + n2,

and
g1 + g2 = g.

For notational convenience, given L = (L1, . . . , Ln) and I ⊂ {1, . . . , n} with
|I| = k, define LI by

LI = (Lj1 , . . . , Ljk
),

where I = {j1, . . . , jk}.
For

a = ((g1, I1), (g2, I2)) ∈ Ig,n,

let
V (a, x, y, L̂) =

Vg1,n1+1(x, LI1)
2m(g1,n1+1)

× Vg2,n2+1(y, LI2)
2m(g2,n2+1)

.

Finally, define Âdcon
g,n : Rn+2

+ → R+ by

Âdcon
g,n (x, y, L1, L̂) =

∑
a∈Ig,n

V (a, x, y, L̂) ·H(x+ y, L1).

III) : Definition of B̂g,n. Finally, define B̂g,n : Rn+1
+ → R+ by

B̂g,n(x, L1, L̂) =
1

2m(g,n−1)
×
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n∑
j=2

1
2
(H(x, L1 +Lj)+H(x, L1−Lj)) ·Vg,n−1(x, L2, . . . , L̂j , . . . , Ln). (5.11)

Remark. Note that in our recursive formula, we always have to divide by
2 when we are dealing with a simple closed geodesic γ separating off a one
handle. The main reason is that in this case the stabilizer of γ contains a
half twist. See [Mirz] for more details.
Connection with topology of the set of pairs of pants. Although
the recursive formula 5.7 has been described in purely combinatorial terms,
it is closely related to the topology of different types of pairs of pants in a
surface. In fact, this formula gives us the volume of Mg,n(L) in terms of
volumes of moduli spaces of Riemann surfaces that we get by removing a
pair of pants containing at least one boundary component of Sg,n. Also, the
second condition in the definition of Ig,n is equivalent to the condition that
the universal covering spaces of the complementary regions of the pair of
pants are both conformally equivalent to the upper half plane [Mirz].
Remark. The functions Acon

g,n , Adcon
g,n and Bg,n are determined by the func-

tions {Vi,j} where 3i+ j < 3g + n. Therefore equation (5.7) is a recursive
formula for calculating Vg,n(L). In fact, we can simplify this recursive for-
mula and use it to prove that Vg,n(L) is a polynomial in L (Theorem 1.1).
Calculating the coefficients of Vg,n(b). The following elementary obser-
vations are our main tools for simplifying the recursive formula.

For i ∈ N, define F2i+1 : R+ → R+ by

F2k+1(t) =

∞∫
0

x2k+1 ·H(x, t) dx.

These functions play a key role in the calculation of Volg,n(L). It is easy to
express the other terms in Bg,n(b) in terms of the F ’s. By setting z = x+ y,
we get
∞∫
0

∞∫
0

x2i+1 ·y2j+1 ·H(x+y, t) dx dy =

∞∫
0

z∫
0

(z−y)2i+1 ·y2j+1 ·H(z, t) dy dz =

=
(2i+ 1)! · (2j + 1)!

(2i+ 2j + 3)!

∞∫
0

z2i+2j+3H(z, t) dz.

Therefore, we have
∞∫
0

∞∫
0

x2i+1·y2j+1·H(x+y, t) dx dy =
(2i+ 1)! · (2j + 1)!

(2i+ 2j + 3)!
F2i+2j+3(t). (5.12)
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The following lemma helps us to proceed to the calculation of Volg,n(L).

Lemma 5.2. The function F2k+1(t) is given by

F2k+1(t)
(2k + 1)!

=
k+1∑
i=0

ζ(2i) (22i+1 − 4) · t2k+2−2i

(2k + 2− 2i)!
.

Therefore F2k+1(t) is a polynomial in t2 of degree k + 1 such that the coef-
ficient of m2k+2−2i lies in π2i ·Q>0.

Remark. Here ζ(0) = −1/2, and therefore the leading coefficient of the
polynomial F2k+1(t) is t2k+2/2k + 2.
Leading coefficients of Vg,n(L). As we will see later, calculating the
leading coefficients of Vg,n(L) turns out to be easier than calculating other
terms; the recursive formula simplifies when

∑
αi = 3g − 3 + n.

Simplifying Acon
g,n and Adcon

g,n . we will use the following observation in order
to simplify infinite integrals.

Let P (x, y) be a polynomial of degree d in x2 and y2 of the form

P (x, y) =
∑

1≤i+j≤d

C(i, j) x2i y2j .

Then equation 5.12 and Lemma 5.2 imply that the function

P̂ (x) =

∞∫
0

∞∫
0

y1 y2 H(y1 + y2, x) P (y1, y2) dy1 dy2

is a polynomial in x2 whose leading term is∑
i+j=d

(2i+ 1)!(2j + 1)!
(2d+ 4)!

C(i, j)x2d+4.

Simplifying Bg,n. Let Q(x) be a polynomial of degree d in x2 of the form

Q(x) =
d∑

i=0

C(i) x2i.

Then the function

Q̂(x, y) =
1
2

∞∫
0

t Q(t) (H(t, x+ y) +H(t, x− y)) dt
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is a polynomial of degree d + 2 in x2. Using Lemma 5.2 we can calculate
this polynomial explicitly, and prove that the term corresponding to x2iy2j

when i+ j = d+ 2 is equal to

(2d+ 1)! C(d)
x2iy2j

(2i)! (2j)!
.

Notation. As we mentioned in the Introduction, the case of g = n = 1 is
exceptional. We will see later that it would be easier to work with

Ĉg(α) =
Cg(α)
2m(g,n)

,

where m(g, n) = δ(g − 1)× δ(n− 1) which is zero except when g = n = 1.
For

a = ((g1, I1), (g2, I2)) ∈ Ig,n,

let i(a), j(a) ∈ Z be such that

i(a) +
n1∑

k=1

αik = 3g1 − 3 + n1 + 1

j(a) +
n2∑

k=1

αjk
= 3g2 − 3 + n2 + 1.

Infact, we have
i(a) + j(a) = α1 − 2

Finally, let F [α] denote the coefficient of xα1
1 · · ·xαn

n in the polynomial
F (x1, . . . , xn). Now, we can use the recursive formula for the volume poly-
nomials to prove the following result:

Lemma 5.3. In terms of the above notation, the coefficients of the polyno-
mials Adcon

g,n (L), Acon
g,n (L) and Bg,n(L) are given by

Adcon
g,n (L)[α] =

2α1 + 1
2

∑
a∈Ig,n

(2i(a) + 1)! (2j(a) + 1)!
(2α1 + 1)!

Ĉg1(i(a), αi1 , . . . , αin1
)·Ĉg2(j(a), αj1 , . . . , αjn2

),

Acon
g,n (L)[α] =

2α1 + 1
2

∑
i+j=α1−2

(2i+ 1)! (2j + 1)!
(2α1 + 1)!

Ĉg−1(i, j, α2, . . . , αn),

and
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Bg,n(L)[α] =

(2α1 + 1)
n∑

j=2

(2(α1 + αj − 1) + 1)!
(2α1 + 1)! (2αj)!

Ĉg(α1 + αj − 1, α2, . . . , α̂j , . . . , αn).

Proof. Here we sketch the proof of the first part. Fix a ∈ Ig,n. It is enough
to find the coefficient of Lα in

∞∫
0

∞∫
0

x y Vg1,n1(x, LI1)× Vg2,n2(x, LI2) H(x+ y, L1)dx dy.

Now using Theorem 1.1 , Vg1,n1(LI1)× Vg2,n2(LI2) is a polynomial in L.
So can use the preceding lemma to calculate the double integral; it is enough
to calculate

∞∫
0

∞∫
0

x2i+1 y2j+1 Cg1(i(a), αI1)× Cg2(j(a), αI2) H(x+ y, L1)dx dy =

= Cg1(i(a), αI1)× Cg2(j(a), αI2)

∞∫
0

∞∫
0

x2i(a)+1 y2j(a)+1H(x+ y, L1)dx dy.

Now equation 5.12 allows us to use Lemma 5.2 to prove the result. 2

6 Virasoro equations

In this section we use the recursive formula for the volume polynomials and
the relationship between these polynomials and the intersection numbers of
tautological classes to derive the Virasoro equations. Let

(α1, . . . αn)g =
∫

Mg,n

ψα1
1 · · ·ψαn

n .

String and dilaton equation. If one of the αi’s is 0 or 1, the coefficient of
L2 α in Adcon

g,n and Acon
g,n equals zero. Then by using Lemma 5.3 and Theorem

4.4, when
∑n

i=1 αi = 3g − 3 + n we have :

• String equation: (1, α1, . . . , αn)g = (2g + n− 2) (α1, . . . , αn)g,
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• Dilaton equation: (0, α1, . . . , αn)g =
∑

αi 6=0

(α1, . . . , αi − 1, . . .)g.

For a simple algebro-geometric proof of the preceding result see [Har].
Virasoro constraints. Let

Fg(t0, t1, . . .) =
∑
{di}

〈
∏

τdi
〉g
∏
r>0

tnr
r /nr!

where the sum is over all sequences of nonnegative integers with finitely
many nonzero terms and nr = Card(i : di = r). Let

F =
∞∑

g=0

λ2g−2Fg.

Define the sequence of differential operators L−1, L0, . . . Ln, . . . by

L−1 =
∂

∂t0
+
λ−2

2
t20 +

∞∑
i=1

ti+1
∂

∂ti
,

L0 =
3
2

∂

∂t1
+

∞∑
i=1

2i+ 1
2

∂

∂ti
+

1
16
,

and for n ≥ 1

Ln = −
(

(2n+ 3)!!
2n+1

)
∂

∂tn+1
+

∞∑
i=0

(
(2i+ 2n+ 1)!!
(2i− 1)!!2n+1

)
ti

∂

∂ti+n

+
λ2

2

n−1∑
i=0

(
(2i+ 1)!! (2n− 2i− 1)!!

2n+1

)
∂2

∂ti∂tn−1−i
,

where (2i+ 1)!! = 1 · 3 . . . · (2i+ 1).
Then we obtain a new proof of Witten’s conjecture:

Theorem 6.1. For k ≥ −1, we have

Lk(exp(F )) = 0.

Remark. In fact, although we show that for any k ≥ −1, Lk(eF ) = 0, since
the sequence {Li} satisfies

[Lm, Ln] = (m− n)Lm+n,
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it is enough to show that L2(eF ) = 0.
Proof. It is easy to see that L−1 and L0 are associated to the dilaton and
string equation.

Define Acon(F ), Adcon(F ) and B(F ) by

Bn(F ) =
∞∑
i=0

an,iti
∂

∂ti+n
F,

Acon
n (F ) =

λ2

2

n−1∑
i=0

bn−i−1,i
∂2

∂ti∂tn−1−i
F,

Adcon
n (F ) =

λ2

2

n−1∑
i=0

bn−i−1,i
∂

∂ti
F · ∂

∂tn−1−i
F,

where
an,i =

(2i+ 2n+ 1)!!
(2i− 1)!!(2n+ 3)!!

,

and
bi,j =

(2i+ 1)!! (2j + 1)!!
(2i+ 2j + 3)!!

.

We have to show that

∂

∂tk+1
F = Acon

k (F ) +Adcon
k (F ) +Bk(F ). (6.1)

When k ≥ 1, we use the recursive formula for the coefficient of L2α1
1 · · ·L2αn

n

in Vg,n(L) to prove 6.1.
More precisely, from the recursive formula for the volume polynomials

in Section 5, we have

(2α1 + 1) · Vg,n(b)[α] = Acon
g,n (b)[α] +Adcon

g,n (b)[α] + Bg,n(b)[α].

Using Lemma 5.3, we can write Acon
g,n (b)[α], Adcon

g,n (b)[α] and Bg,n(b)[α] in
terms of Ĉh,m(α) where 3h+m < 3g + n. On the other hand, by Theorem
4.4, we have

Ĉg,n(α) =
Cg(α)
2m(g,n)

=
1

2|α| α!

∫
Mg,n

ψα1
1 · · ·ψαn

n .

Now we use Lemma 5.3 to show that Acon
g,n , Adcon

g,n and Bg,n correspond
to the terms Acon

α1−1, A
dcon
α1−1 and Bα1−1 in equation (6.1).
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For notational brevity, let

[α1, . . . , αn]g = λ2g−2(
∫

Mg,n

ψα1
1 · · ·ψαn

n ) ·
∏

i

tni
i

ni!

where nr = Card(i ∈ (α1, . . . , αn) : αi = r).
Since

(2n)!
2nn!

= (2n− 1)!!,

by using Lemma 5.3 we have:

∂

∂tα1

[α1, . . . , αn]g = (6.2)

λ2

2

∑
a∈Ig,n

bj(a),i(a)
∂

∂ti(a)
[i(a), . . . , αin1

]g1 ×
∂

∂tj(a)
[j(a), . . . , jn2 ]g2+

+
λ2

2

∑
i+j=α1−1

bi,j
∂

∂ti ∂tj
[i, j, α2, . . . , αn]g−1

+
n∑

j=2

an,i tα1+αj−1
∂

∂tαj

[α1 + αj − 1, . . . , α̂j , . . . , αn]g.

Note that for a ∈ Ig,n, i(a)+ j(a) = α1 +2. So for obtaining equation (6.1),
we just have to add up the corresponding equations containing the term tα1 .

2
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